
Twins or False Friends? A Study on Energy
Consumption and Performance of Configurable

Software
Max Weber∗, Christian Kaltenecker†, Florian Sattler†, Sven Apel†, Norbert Siegmund∗

∗ Leipzig University, Germany
† Saarland University, Saarland Informatics Campus, Germany

Abstract—Reducing energy consumption of software is an
increasingly important objective, and there has been extensive
research for data centers, smartphones, and embedded systems.
However, when it comes to software, we lack working tools
and methods to directly reduce energy consumption. For per-
formance, we can resort to configuration options for tuning
response time or throughput of a software system. For en-
ergy, it is still unclear whether the underlying assumption that
runtime performance correlates with energy consumption holds,
especially when it comes to optimization via configuration. To
evaluate whether and to what extent this assumption is valid
for configurable software systems, we conducted the largest
empirical study of this kind to date. First, we searched the
literature for reports on whether and why runtime performance
correlates with energy consumption. We obtained a mixed, even
contradicting picture from positive to negative correlation, and
that configurability has not been considered yet as a factor for this
variance. Second, we measured and analyzed both the runtime
performance and energy consumption of 14 real-world software
systems. We found that, in many cases, it depends on the software
system’s configuration whether runtime performance and energy
consumption correlate and that, typically, only few configuration
options influence the degree of correlation. A fine-grained analysis
at the function level revealed that only few functions are relevant
to obtain an accurate proxy for energy consumption and that,
knowing them, allows one to infer individual transfer factors
between runtime performance and energy consumption.

I. INTRODUCTION

The energy demand of computing systems has been rapidly
increasing for decades, with an ever growing number of users,
devices, and applications. Recent developments in deep learn-
ing, big data analysis, and cloud computing further increase
this demand [1], [2], [3]. While it is hardware that consumes
energy, it is the software that controls how long and how
intensive the hardware is used.

One powerful lever to optimize non-functional properties
such as energy consumption and performance of software
systems is configurability [4], [5], [6]. Recent work in this
area demonstrates that a proper configuration can speed up
a system’s runtime performance by orders of magnitude [7],
[5], [6]. Thus, it is not surprising that developers increasingly
include configuration options in their code base [4], [8].
Clearly, configurability can serve as a means to optimize
runtime performance, but can we reduce energy consumption
of configurable software systems in a similar way?

The backbone of most optimization techniques in this area
are surrogate regression models [5], [6], [9], which are able
to estimate performance of a given software configuration.
Constructing such a model usually requires extensive upfront
measurements of a diverse set of software configurations to
obtain a proper learning set [10]. While measurements are
often straightforward to obtain for runtime performance and
can even be obtained at the statement level (e.g., via profiling
or code instrumentation [11], [12]), accurate and fine-grained
energy consumption measurements are challenging for several
reasons [13]: Measuring the energy consumption of software
includes also the energy consumption of the underlying hard-
ware and other running processes on the system, which gives
rise to measurement uncertainty and bias. Worse, the physical
measurement process has fundamental limitations regarding
precision (measurement accuracy) and temporal resolution
(sampling rate) [14]. In general, energy measurements are
more prone to noise than performance measurements, because
energy-measurement devices are more inaccurate compared
to the internal clock that is used for performance measure-
ments [15], [16], [17]. So, as a matter of fact, a direct
measurement of energy consumption is complicated, time-
consuming, and inherently noisy. Hence, a cheap and accurate
proxy measure for energy consumption is clearly desirable.
As different research studies [18], [19], [20] and practitioners
guides [21], [22] suggest, performance might be exactly that
proxy. In this vein, we reformulate our initial question:

Can we use runtime performance as a proxy measure for
energy consumption, and thus reduce energy consumption
by performance tuning of software configurations?

The key is whether there is a configuration-dependent corre-
lation between runtime performance and energy consumption.
That is, do configuration options affect energy consumption in
a similar way as they affect runtime performance? Although
there is anecdotal evidence and isolated studies on the corre-
lation of runtime performance and energy consumption (see
Section III-B), answering this question is far from trivial and
has not been studied in the context of configurability, despite
its relevance for industry and society.

To answer our research question we conduct several ex-
periments. First, we search relevant literature on the relation

between energy consumption and runtime performance to
assess the state of the art about reported possible causes for
an observed positive, negative, and absent correlation between
energy consumption and runtime performance. This way, we
obtain a broad picture about the validity of a performance
proxy and ascertain whether configurability has been taken
into account so far. Second, we conduct a series of experiments
measuring runtime performance and energy consumption of
a diverse set of configurable, real-world software systems
analyzing the correlation of runtime performance and energy
consumption across their configuration spaces. This includes
the analysis of the whole configuration space as well as parts
of it, down to the level of individual configuration options
or interactions thereof. Finally, we conduct an experiment
involving fine-grained function-level energy measurements to
trace possible causes for correlation and non-correlation to the
function level. That is, we selectively increase the resolution
of our measurements from system level down to code level
and investigate the energy–performance correlation of config-
uration options at each level.

We found strong correlations between performance and
energy consumption for all subject systems averaged over the
configuration space (i.e., reducing response time reduces en-
ergy consumption). However, when considering only a subset
of (similar) configurations, we observe that this correlation
may break down and even reverse. This can have severe conse-
quences in scenarios when changing a running configuration to
a similar one that reduces response time, energy consumption
might even increase. We found that this behavior can be
traced to individual configuration options and interactions that
affect certain functions in the code such that the correlation
may vary depending on which option is active. Moreover, we
found that few functions exhibit a distinctive transfer factor,
enabling us to transfer response times to energy consumption
and vice versa depending only on a few options. Knowing
these functions and the corresponding configuration options
allows for the computation of these transfer factors and thereby
for improving the applicability of performance as a proxy. Our
analysis of the literature supports these findings not only by
showing a mixed picture of performance–energy correlation,
but also by pointing to common causes of correlation, such
as caching, and multi-threading, all representing functionality
that is often encapsulated and activated by individual options.

Overall, this paper makes the following contributions:
• We analyzed 75 studies that report on empirical findings

about the energy–performance correlation of software
systems, obtaining a mixed picture on whether and why
energy consumption and runtime performance correlate.

• We conducted a series of experiments measuring per-
formance and energy consumption of various configura-
tions of 14 real-world software systems, analyzing how
configuration options and their interactions affect the
correlation between energy and performance. Based on
the results of our experiments, we extract insights and
deduce actionables for reducing energy consumption of
configurable software systems.

Fig. 1: Performance compared to energy consumption of
all measured configurations of X264 (top) and HSQLDB
(bottom). Colors and shapes represent different values of the
selected configuration option.

• We traced the effects of configuration options on the
correlation between energy consumption and runtime
performance down to the function level, thereby facili-
tating understanding the causes, energy debugging, and
optimization at the code level.

• We release all material, including measurement data (2.5
years of CPU time), scripts, and figures, on a publicly
accessible supplementary Web page 1.

As such a study has not been conducted before, our findings
contribute to the understanding of the configuration-dependent
correlation between runtime performance and energy con-
sumption of software systems. At the same time, identi-
fying influential configuration options enables practitioners
optimizing energy consumption and performance, only by
measuring runtime performance. Tracing correlation variance
at the system level down to functions provides developers a
useful lever for energy debugging.

II. CORRELATION OF ENERGY CONSUMPTION AND
PERFORMANCE

The measure of energy consumption quantifies the amount
of energy consumed that is required to resolve a task. It
is calculated by integrating the power draw over time. It is
reasonable to expect that longer execution times result in
higher energy consumption. However, the relation between
energy consumption and runtime performance is not straight-
forward [23], [21], [24], [25], [26]. Therefore, we distinguish
three modes of correlation: positive, negative, and no correla-
tion.

1Supplementary Web page: https://zenodo.org/record/7544891

https://zenodo.org/record/7544891

Positive correlation means that, the longer a task runs, the
more energy it consumes. Conversely, reducing execution time
(i.e., improving performance) implies saving energy. That is,
performance-optimal software configurations are likely to be
also energy-optimal configurations.

Negative correlation arises when a higher energy consump-
tion is associated with shorter execution times or vice versa.
That is, there is a trade-off between the two, and one needs to
decide to trade runtime performance for energy consumption.

Absent correlation implies that there is no dependency or
observable relation between runtime performance and energy
consumption. This is the case when, for the same amount of
consumed energy, tasks require varying execution times or vice
versa. Finding this mode of correlation in a configuration space
enables users to optimize one measure (either runtime perfor-
mance or energy consumption) without having to care about
the other (i.e., there is no trade-off). This implies that runtime
performance is no proper proxy for energy consumption.

The three modes of correlation are illustrated in Figure 1:
For both subject systems, the set of all configurations follow
the general pattern that longer execution times are associated
with more energy consumption. Splitting the set of all con-
figurations according to specific options can improve correla-
tion between energy consumption and runtime performance,
though. Figure 1 (top) shows option Cores of the video
encoder X264. We can see that, deciding between the different
settings for Cores, the resulting subsets of configurations
approach a line in the plot. That is, for each setting of the
option, we can use runtime performance as a proxy for energy
consumption, though not globally. This is not always the case,
though. Figure 1 (bottom) shows HSQLDB’s options Encryp-
tion and Tables. Enabling Blowfish increases the execution
time as well as the energy consumption. If we enable Blowfish
and MemoryTables together, we see that all configurations are
vertically arranged around 325 seconds. In this cluster, we
can tune the energy consumption by changing configurations
without degrading performance. This is an example of absent
correlation.

III. ANALYSIS OF THE STATE OF THE ART

As the first step to assess the relationship between runtime
performance and energy consumption, we searched and ana-
lyzed the literature reporting on experiments that involve both
sides. To this end, we systematically collected a set of papers,
read them to identify relevant work, and analyzed the reported
causes of correlation.

A. Methodology

First, we assembled an initial set of papers by searching
for keywords in relevant software engineering venues (ICSE,
ICPE, ESEC/FSE, and ASE), in particular, the keywords
“energy”, “power”, and “green” in the title. We focused on
recent work released between 2019 and 2022. The rationale
is to set the starting point of the literature review on most
recent software engineering work that copes with analyzing
the energy consumption of software systems. In a second step,

we extended the set of papers by those that have been cited
by the papers already in our batch, following a backward
snowballing method [27], [28]. This includes papers released
before 2019 (the oldest from 1995) and papers from a wider
range of journals and conferences (including TSE, MSR,
CASES, MOBILESoft, HPCS). This way, we retrieved a set
of 313 potentially relevant papers. Note that our objective here
is not to conduct a formal or exhaustive literature survey, but
rather to obtain a large and robust overview of performance–
energy studies and to learn whether there is consensus in the
literature about causes of performance–energy correlation and
what factors strengthen and weaken a positive correlation.

We examined all 313 papers to identify those that discuss
the relation of runtime performance and energy consumption.
We deem a paper relevant if it measures energy consumption
and runtime performance of software in combination. Fur-
thermore, the paper in question has to analyze and discuss
the link between the two. Here, a correlation analysis, a
trade-off analysis, or a discussion of the relation are relevant
inclusion criteria. Following empirical standards for literature
studies [27], [28], two authors discussed whether the papers
match our criteria. This step resulted in 76 relevant papers (out
of 313 papers). From this set, we collected the reported expla-
nations for why runtime performance and energy consumption
correlate and abstract causes, which we have iteratively revised
and refined, similar to card sorting.

B. Results

From the 76 papers that we have analyzed, we found
42 papers reporting a positive, 20 a negative, and 31 no
correlation. Some of the papers reported multiple modes of
correlation in their experiments.

From the relevant papers, we extracted the causes of a
specific correlation mode to learn in which circumstances
we can use runtime performance as a proxy for energy
consumption right away. From the 76 relevant papers, 32 did
not identify or discuss possible reasons for (absent) correlation.
The remaining 44 papers identified and discussed, in total, 13
different causes of why (and why not) runtime performance
and energy correlate. We summarized the eight causes related
to configurability in Table I, showing the mode of correlation,
the extracted cause, and excerpts from the literature.

Notably, the causes for positive and negative correlation
overlap. For example, caching has been named to cause a
positive and a negative correlation [33], [40]. Reported reasons
for this contradiction are different setups and workloads.

Overall, our literature analysis reveals a mixed picture of the
state of the art on the correlation between energy consumption
and runtime performance. Many papers reported that runtime
performance and energy consumption correlate, but often even
in opposite directions. Fortunately, we found several reasons
stated by the papers’ authors of why they have observed a
certain mode of correlation. Mostly, these reasons point to
specific hardware devices, memory-processing trade-offs (e.g.,
via caching), and intensive IO operations. What is interesting
is that all these aspects can often be controlled or, at least,

TABLE I: Overview of the three modes of correlation with the corresponding causes and excerpts from the literature.

Mode Cause Finding

Pos CPU-intensive tasks [29], [30], [31], [32] Rashid et al. found “a good linear regression of energy vs. time” and a “large part of the energy consumed is determined
by the time performance” [30].

Memory and caching [33], [34] Subramaniam et al. found that “there is a correlation between power and performance related activity such as L2 data
cache miss at a certain workload” [33].

Tuning HW params [35], [36], [37] Rauber et al. found that, using a larger number of threads, energy consumption as well as runtime increases when varying
the number of threads and processor frequency [35].

Neg CPU-intensive tasks [38], [39] Oliveira et al. found that “performance is often not a proxy for energy consumption”, which is why they concluded that
“faster != greener” [38].

Memory and caching [40], [41] Michanan et al. found promising energy saving opportunities, but not always time savings, concluding that “even
something very low-level like the cache system can impact the power-performance analysis significantly and unpre-
dictably” [40].

None Network comm. [42], [24], [43] Malavolta et al. found that, for energy consumption, caching has no significant impact on leading a progressive Web
application (PWA), whereas the loading time diverges, because the PWA has to be loaded through the network if it is
not in the cache [42].

IO-intensive systems [38], [44] With their multi-core thread shuffling technique, Cai et al. achieve up to 56% energy savings without any performance
loss for huge amounts of data [44].

Tuning CPU&HW params [41], [25] Pinto et al. conclude from their experiments varying numbers of threads, task division strategies, and workloads, that
“being ‘faster’ clearly has little correlation with being ‘greener’ for concurrent programs on multi-core architectures” [25].

affected by configuration options in contemporary software
systems. We conjecture that the different modes of correlation
can also emerge in a single software system depending on the
configurations that are executed. This would, however, make
the proxy question more nuanced, as it would depend on the
individual configuration options that are selected. We will shed
light on this issue in our empirical study in Section V.

C. Related Studies

Closest to our paper are experiments reporting on variations
of performance arising from a software’s configuration [25],
[33], [35], [34], [36]. The most complex experiment reported
so far considered only five configuration options of a single
software system [36]. This strongly indicates that there is
only a limited coverage of configurability in the analysis of
the correlation between energy consumption and runtime per-
formance. Clearly, effects stemming from interactions among
configuration options as well as different types of options
cannot be studied with such experimental setups. Interestingly,
we see that positive and no correlation are on par for these
experiments [25], indicating that even for a small number
of options, there might be good reasons not to use runtime
performance as a proxy for energy optimization.

IV. EXPERIMENT SETUP

In this section, we define our research questions and
describe the measurement setup, including subject systems.
We make all information on subject systems and experiment
data including energy consumption and runtime performance
measurements available on our supplementary Web site 2.

A. Research Questions

System-Level Correlation. To use runtime performance as a
proxy measure for energy consumption, we have to evaluate
how the two align with each other. Since the literature provides
a mixed picture, we investigate whether both properties align

2Supplementary Web page: https://zenodo.org/record/7544891

over the whole configuration space or only in parts of it. So,
we formulate the following two research questions:

RQ1.1 To what extent does runtime performance and
energy consumption correlate across the config-
uration space?

RQ1.2 Does this correlation stay constant across the
configuration space or are there clusters of similar
performing configurations that exhibit different
correlations?

Option-Level Correlation. Next, we are interested in to
what extent individual configuration options (e.g., number
of threads, cache size, encryption mode) affect the correla-
tion between energy consumption and runtime performance.
Changing a configuration usually corresponds to the (de-
)selection of system functionality. By analyzing the correlation
at the option-level, we gather evidence on whether runtime
performance is a viable proxy for energy optimization for
option-specific system functionality. This enables us to find
(positively) correlating options and interactions, should they
exist. So, we formulate the following two research questions:

RQ2.1 Can system-level correlations be traced to individ-
ual configuration options and interactions?

RQ2.2 What is the fraction of options and interactions
that have an effect on the correlation?

Function-Level Correlation. While RQ2.1 traces the modes
of correlation to individual options, we want to pinpoint func-
tions in which the correlation is influenced by configurations.
The goal is to identify possible means for developers to use
the execution time of a function as a proxy for energy con-
sumption, thereby enabling code-based energy optimization.
Such information has been requested by developers to have an
actionable tool for a green software development [45], [46].
So, we formulate the next research question:

RQ3 Does configuration-dependent correlation exist at
the function level?

https://zenodo.org/record/7544891

B. Measurement Setup

We conducted all system-level runtime performance and
energy measurements on two clusters, equipped with a dedi-
cated energy measurement device. The first cluster uses Intel
NUCs with i7-8559U CPUs, 32 GB DDR4-2666, and 500 GB
NVME SSD. Every machine is plugged into a GUDE 8045-
1 PDU (power distribution unit), measuring the power draw
with an interval of 1 second per outlet. The second cluster
consists of Intel Core i5-4590 machines having 16 GB RAM,
256 GB SSD, and depending on the subject system, a minimal
installation of Ubuntu 16.04, Ubuntu 18.04, or Debian 9. Each
machine is connected to a IPT iPower P1 PDU.

To measure energy consumption at the function level, we set
up a dedicated single machine running an Intel Core i5-7500
with 4 GB RAM and 120 GB SSD, and a minimal installa-
tion of Ubuntu 18. This machine contains a 2.5 kHz energy
measurement system [47], which is based on the INA226
power measurement chip. No other tasks were running during
performance and energy measurements. We conducted pre-
experiments to calculate the measurement bias (i.e., standard
deviation of repeating runs). Based on these experiments, we
repeated our final measurements 3 times, taking the average.
When measuring client-server systems, such as Web servers
and databases, we used multiple machines in parallel, where
one acted as server and one or more as clients. In total,
we invested 2.5 years of CPU time obtaining the largest
performance–energy data set on configurable software systems
we are aware of.

C. Subject Systems

To obtain a representative set of systems, we selected
14 subject systems from different application domains, of
different sizes, using different programming languages, and
with varying configuration spaces. In particular, we selected
subject systems from related studies [12], [48], [10], [11], [5]
that also measure energy consumption or runtime performance
of configurable software systems. We opted for a mixed mea-
surement setup that carefully balances measurement effort (in
a feasible amount of time) and coverage of the configuration
space. For small subject systems (BROTLI and LRZIP), we mea-
sured all configurations. For larger systems, such as JUMP3R
and KANZI, we applied t-wise sample with t=2 to obtain
a feasible set of configurations for measurements, including
possible pair-wise interactions. For the remaining 10 systems,
we have pre-selected a set of configuration options, whose
documentations hint at an effect on runtime performance or
energy consumption, this way, omitting debugging or help
options.

D. Basic definitions

In our study, we consider a set S of subject systems,
whereas each subject system s ∈ S provides both a set of
valid configurations Cs and a set of configuration options Os.
Each configuration c ∈ Cs assigns a value to each option
o ∈ Os. Function o(c) maps a configuration to the value
of the corresponding configuration option o. The domain of

TABLE II: Overview of subject systems, including application
domain, programming language, lines of code (LOC), number
of valid configurations (|C|), and configuration options (|O|).

System Domain Language LOC |C| |O|

7Z Compression C++ 164 977 68 640 10
APACHE Web server C 235 825 13 441 11
BROTLI Compression C 34 501 181 2
EXASTENCILS Code Generator Scala 71 240 86 058 10
HSQLDB Database Java 187 632 864 14
JUMP3R MP3 encoder Java 20 940 933 120† 14
KANZI Compression Java 21 805 1 984† 6
LLVM Optimizer C 7 675 240 65 536 16
LRZIP Compression C 15 475 5 184 12
MONGODB Database C++ 4 918 542 6 840 15
NGINX Web server Go 147 246 4 416 14
POSTGRESQL Database C 944 473 864 7
VP8 Video encoder C/C++ 352 896 2 736 11
X264 Video encoder C 68 475 3 840 11

† We used 2-wise sampling to measure a representative subset of configurations.

this function dom(o) (i.e., the possible values for a given
option) is typically either binary (o(c) : Cs → {0, 1}) or
numeric (o(c) : Cs → Z). The functions Es : Cs → R and
Ps : Cs → R map a configuration of the subject system s to its
measured energy and runtime performance value, respectively.
The average of all energy and performance values is defined as
Es =

1
ns

∑ns

i=1 ei and Ps =
1
ns

∑ns

i=1 pi, where ei and pi are
the energy and performance values of the ith configuration,
and ns number of all measured configurations Ms.

V. PERFORMANCE–ENERGY STUDY

To answer our research questions, we analyze the energy
consumption and runtime performance of 14 real-world soft-
ware systems presented in Table II.

A. System-Level Correlation

Operationalization: To answer RQ1.1, we quantify the
correlation between energy consumption and runtime per-
formance of the entire configuration space using Pearson’s
correlation coefficient. Pearson’s correlation coefficient states
how well the mapping between runtime performance and
energy consumption can be represented by a linear relation.
To investigate whether the correlation holds in all or only
some parts of the configuration space (RQ1.2), we compute
the correlation for slices of the data. Specifically, we split
the performance dimension of each subject system s into
19 slices Ls,1,Ls,2, . . . ,Ls,19 ⊂ Ms of similar performance
range (i.e., time interval) and compute the correlation of all
configurations falling into that slice. Each slice represents 1

10
of the runtime performance range between the slowest and
fastest configuration. To be robust against unfavorable splits,
we overlap each slice by half of the slice width, resulting in a
total of 19 slices. For each slice Ls,i, we compute Pearson’s
correlation coefficient rs,i:

rs,i =

∑
c∈Ls,i

(
Ps(c)− Ps

)
·
(
Es(c)− Es

)√∑
c∈Ls,i

(
Ps(c)− Ps

)2 ·∑c∈Ls,i

(
Es(c)− Es

)2

The coefficient rs,i ranges from −1 to 1. A coefficient of
0 indicates absent correlation, 1 indicates a perfect positive
correlation, and −1 a perfect negative correlation. We refer to
r also as correlation value.

To quantify the extent of possible deviations of (sets of)
configurations from the correlation, we additionally fit a linear
function with all measurements available: fs : Ps → Es using
linear regression. That is, given p ∈ Ps, we ask how well
can we predict e ∈ Es. This way, we learn how well runtime
performance acts as an estimator for energy consumption. The
rationale is that the extent and distribution of the prediction
error maps the unrelatedness of runtime performance and
energy consumption depending on the configuration space.

Results: Table III lists the results of the correlation analysis.
Pearson’s correlation for the whole configuration space is
shown in the first column. The column for the slice correlation
lists the number of slices that have a certain strength of
correlation. Finally, the last two columns show the mean
absolute percentage error (MAPE; a standard measure for
model accuracy[9], [49], [11]) and its according standard
deviation (StD) of the linear model fitted on all measurements.

TABLE III: Correlation between energy consumption and
runtime performance. Green cells show an error below 5 %.

Correlation modes

System Pearson SN MN WN MP SP MAPE StD

7Z 0.98 1 0 1 7 6 14.7 11.7
APACHE 0.99 0 0 0 2 0 2.2 1.8
BROTLI 1.00 0 0 0 0 11 9.3 14.1
EXASTENCILS 0.98 0 0 0 6 13 5.7 4.8
HSQLDB 0.99 0 1 6 1 0 3.0 2.2
JUMP3R 0.99 1 1 2 0 6 10.0 8.2
KANZI 0.97 2 1 6 3 7 70.4 64.1
LLVM 0.99 0 0 0 0 19 0.7 0.5
LRZIP 0.99 1 0 3 2 5 31.0 28.8
MONGODB 0.99 0 0 6 9 4 1.6 1.2
NGINX 0.99 0 0 1 1 3 8.2 19.3
POSTGRESQL 0.95 1 0 6 9 2 1.2 0.9
VP8 0.96 0 0 7 3 9 22.0 17.5
X264 0.96 0 0 3 6 10 10.3 7.1

Pearson’s correlation of different configurations between energy consumption and
runtime performance; SN: strong negative (r ≤ 0.7); MN: moderate negative

(−0.7 < r ≤ −0.3); WN: weak or no (−0.3 < r ≤ 0.3); MP: moderate positive
(0.3 < r ≤ 0.7); SP: strong positive (r ≥ 0.7); MAPE: mean absolute percentage
error of all configurations given runtime performance predicting energy consumption;

STD: standard deviation of the distribution of prediction errors.

We observe a nearly perfect linear correlation across all
subject systems when taking the whole configuration space
into account. Even the lowest correlation value we found
(X264) is still very large (0.963). To obtain deeper insights
into the distribution of performance–energy correlation across
the configuration space, we plot the energy consumption and
runtime performance for all configurations (dots) in Figure 2
for a selected subset of systems (plots for all systems can be
found at our supplementary Web page).

The key observation is that, although we observe a general
trend of an increasing energy consumption with increasing
response time, this trend does not hold for all configurations in

Fig. 2: Correlation of BROTLI, JUMP3R, X264, MONGODB,
and 7Z. Linear regression shows the fitted linear function for
all measurements; Slice correlation shows a histogram for
the number of slices of runtime performance data arranged
according to their individual correlation coefficient; Prediction
error depicts the MAPE for all configurations as a histogram.

the respective configuration spaces. Computing the correlation
between energy consumption and runtime performance of
subsets of configurations shows a very heterogeneous picture.
For instance, for KANZI, in 3 out of 19 slices, we observe a
strong negative correlation, although the overall correlation is
strongly positive (0.977). That is, for these three areas of the
configuration space, increasing the response time, decreases
energy consumption and vice versa.

In HSQLDB, none of the subsets of configurations have a
strong positive correlation. This is an instance of Simpson’s
paradox, that is, detecting a strong correlation for all the
data while simultaneously detecting no or opposite correlation
for subsets of the same data [50]. This observation hints at
a significant insight into system-level correlation: Changing
configurations locally in the configuration space may not
follow the global trend of a strong performance–energy corre-
lation. Only BROTLI and LLVM seem to be consistent in the
correlation of the subsets with the overall correlation.

Insight: Even a perfect linear correlation between energy
consumption and runtime performance is no guarantee for
having a good proxy for energy consumption for individual
configurations. That is, energy consumption may still vary
substantially for configurations with similar performance.

Actionable: To decide whether runtime performance is an
appropriate proxy for energy consumption, it is necessary
to inspect whether the correlation holds also for relevant
slices of the configuration space. Considering the whole
configuration space, runtime performance is a suitable in-
dicator for energy efficiency, but being confined in a small
subspace (e.g., by functional requirements or existence of a
running configuration), runtime performance might become
an unreliable proxy.

Looking deeper into the data (e.g., Figure 2, left column),
we find that some configurations have a different energy
consumption for a similar runtime performance and vice
versa. To quantify for which software systems a performance
proxy is suitable, we review the MAPE in Table III. For
five systems, the linear model estimates energy consumption
with a low MAPE: APACHE, HSQLDB, LLVM, MONGODB,
and POSTGRESQL. This is because energy consumption and
runtime performance values are close to the regression line
across the whole configuration space (as shown in Figure 2).
The other systems have a high MAPE (over 5 %) or a high
standard deviation, which means that we cannot use runtime
performance as a reliable proxy for many of the configurations
of these systems [51]. Figure 2 (right column) shows the
underlying distribution of the MAPE. We can see that there
are groups of configurations that diverge substantially from
the regression line (e.g., centered around 20 % error rate for
7z), which indicates multi-modal error distributions for some
software systems.

Discussion: A configuration is often not selected without
certain restrictions and functional requirements. Our results
suggest that shrinking the configuration space can negatively
influence the correlation value. In other words, the positive
correlation might be an artifact of the combinatorially huge
number of positively linked configuration decisions that get
reduced when looking only at a subset of configurations.
Strong indications for this are (i) configurations with a similar
runtime performance (different groups) having no, weak, or
even negative correlations, even if all configurations together
have a very strong positive correlation; (ii) multi-modality
in the error rate distribution, pointing to different degrees of
correlation of subsets of configurations. Since a configuration
is composed of the choices of several individual configuration
options, we can already infer that some options must have
a profound distinctive influence on the correlation value. To
understand this effect better, we investigate next the role
of individual configuration options and their interactions as
possible drivers of a correlation between energy consumption
and runtime performance.

B. Influence of Options and Interactions on the Correlation

Operationalization: To answer RQ2.1, we quantify the
correlation between energy consumption and runtime perfor-
mance for individual configuration options using Pearson’s
correlation coefficient. Similar to RQ1.2, we compute Pear-
son’s correlation for individual slices, but now per option, to

investigate whether the correlation of specific configuration
options holds in the whole or only parts of the configuration
space. For each configuration option o ∈ O, we divide the
configurations of each slice Ls,i into different sets such that
each set contains only configurations in which the option has
a fixed value.

Furthermore, we quantify the improvement (or deteriora-
tion) of prediction accuracy when dividing the set of all con-
figurations by the values of individual configuration options.
For this purpose, we fit a linear model fo,v

s : Ps → Es for
all o ∈ Os and all values v ∈ dom(o) with each set of
configurations of the individual configuration options. This
way, we determine whether runtime performance is a reliable
proxy for energy consumption when looking only at partitions
of the configuration space whereby the partition is specified
by an individual option’s value. We can also identify highly
correlating options and interactions with this method.

To this end, we compare the error of the global linear model
using all configurations (RQ1.2) with the error of the linear
model of the best suitable option (lowest MAPE). A smaller
error for a certain configuration option means that this con-
figuration option explains some of the performance variance
and thus fosters linear correlation. We use a threshold of 5 %
as indicator for good models [51], [52]. To answer RQ2.2, we
report per subject system the number of configuration options
that reduce the error below 5 %.

Interactions between configuration options are known to
influence performance [51], [5]. We determine interacting
configuration options by means of a qualitative analysis of the
influence of configuration options. Specifically, we search for
options with values that are locally clustered in certain areas
of the performance–energy space, and we manually inspect
whether a cluster can be isolated from all other configurations
by selecting a combination of configuration options. Figure 1
illustrates this situation for HSQLDB. The Blowfish algorithm
has a distinct characteristic that is easily separable from other
values of Encryption. If we want to identify the cluster of
configurations around 325 seconds, we need to select only
the value MemoryTables from option TableType. Two of the
authors conduct this analysis for all subject systems and all
options to identify all interacting configuration options.

Results: In Table IV, we summarize our findings on the
effect that individual configuration options and interactions
have on the correlation between energy consumption and
runtime performance (RQ2.1 and RQ2.2). The first column
shows the mean value of the correlations per configuration
option. Similar to RQ1.1, we see a perfect positive correlation
for all subject systems. The lowest correlation coefficient
(BROTLI) is still strong (0.91).

The columns SN, MN, WN, MP, and SP of Table IV show
the number of cases summarized over all 19 slices when a
configuration options exhibits the corresponding correlation
mode. Similar to RQ1.2, we observe a mixed picture for
most systems. We find even systems (e.g., MONGODB) for
which all sets of configurations have a weak or moderate
positive correlation. Compared to RQ1.2, we observe that the

TABLE IV: Correlation between energy consumption and
runtime performance based on configuration options for all
subject systems. Green cells show an error below 5 %.

Correlation modes

System Pearson SN MN WN MP SP MAPE CO CI

7Z 0.98 33 5 86 156 207 7.9 1 3
APACHE 0.99 0 0 23 16 54 4.0 0 0
BROTLI 0.91 7 0 2 20 122 6.2 0 0
EXASTENCILS 0.91 1 1 16 178 478 5.5 0 0
HSQLDB 0.97 1 15 77 42 9 2.8 0 3
JUMP3R 0.98 16 18 29 6 114 4.5 2 0
KANZI 0.96 12 13 50 42 117 23.7 4 2
LLVM 0.99 0 0 8 15 572 0.7 0 0
LRZIP 0.98 11 2 40 48 87 7.1 1 3
MONGODB 0.99 10 9 156 224 84 1.5 0 3
NGINX 0.99 0 0 36 35 73 4.3 0 0
POSTGRESQL 0.99 0 0 3 32 129 1.2 0 0
VP8 0.97 5 2 51 150 141 4.7 2 3
X264 0.96 3 4 56 129 202 2.5 2 5

Pearson: mean value of the correlation coefficients for all values of different
configuration options; SN: strong negative; MN: moderate negative; WN: weak or no;
MP: moderate positive; SP: strong positive; MAPE: mean absolute percentage error of

all configurations given runtime performance predicting energy consumption; CO
(configuration option): number of configuration options that foster positive correlation;

CI (configuration interaction): number of configuration options that are part of an
interaction.

Fig. 3: Influence of configuration options on correlation for
KANZI and 7Z; Left: scatterplot of all configurations colored
by different option values; Right: distribution of regression
errors of all configuration options predicting energy consump-
tion given runtime performance; Dashed red vertical line:
regression error using all configurations.

correlation of configuration options per slice spreads more
over the different modes of correlation. Hence, the strong
correlation seen in RQ1.1 can, at least, partially be attributed
to an averaging global effect that does not hold when looking
at individual slices.

Column MAPE in Table IV represents the highest achiev-
able energy prediction accuracy when fitting individual mod-
els per configuration option on runtime performance data.
Compared to RQ1.1, the prediction error decreases for all
subject systems. This indicates an option-specific correlation.

For example, we observe a substantial drop in the error of
KANZI from 70.4% to 23.7%. To illustrate this effect, we
show in Figure 3 the configuration space of 7Z. Here, we
learn a separate model for each of the five compression
modes of the option Compression method. Interestingly,
when selecting BZip2, we observe a larger spread across
the energy–performance space, leading to an increased error
compared to the global model. This indicates that, for some
values of configuration options, correlation is absent, and a
performance proxy would fail when using one of these options.

LRZIP and X264 exhibit error rates in which the error of the
best model is substantially lower than the worst model and the
average error over all models. The best regression model of
X264, generated from the configuration option Cores, has an
error of 2.5%. That is, selecting a good configuration option
for the split greatly improves model accuracy, suggesting that
runtime performance is a good proxy. In Figure 1, we had
shown the effect of dividing the configuration space into four
sets, each with one value of Cores. We can clearly see that
this split aligns the corresponding configurations along four
different regression lines leading to more accurate energy
estimates when considering each line individually, instead of
averaging across them.

Answering RQ2.2, we found the same pattern also for other
systems: A small number of options (i.e., correlating options)
is able to lower the prediction error. We report the number of
these correlating options (CO) in Table IV. In total, there are
12 out of 155 configuration options that lower the error by
more than 5%. Across all systems, fitting a model per value
of an option always reduces the error. That is, small to large
deviations in correlation occur in all subject systems for the
majority of options.

So far, we looked at individual configuration options, but
we found also correlating interactions among options. That is,
setting multiple configuration options to a certain value might
affect the performance–energy correlation (CI in Table IV). In
total, there are 22 configuration options involved in interac-
tions that substantially affect the correlation. Notably, we were
able to identify 14 options that have not been found by the
previous analysis (CO in Table IV). This means, when taking
interactions into account, not 12 but 26 options out of 155
lower the error rate. Interestingly, we found that seven subject
systems have no interactions relevant for the performance–
energy correlation and exactly those systems already have a
low prediction error. This is a possible indicator that inter-
actions may be responsible for changes in the performance–
energy correlation for the other systems.

Discussion: Overall, we obtain a similar picture as in
RQ1.1 and RQ1.2: The linear correlation across the whole
energy and time range is nearly perfect for all systems.
However, when correlating slices of data, we see all modes of
correlation for different subsets of configurations by fitting the
values of individual options. Furthermore, predicting energy
consumption based on runtime performance of only a subset of
configurations often reduces the prediction error. Interestingly,
we also see that this applies only to a few options (12 out of

195 options across all systems). This is good news and bad
news at the same time: It means that runtime performance
usually works as a proxy for large portions of the configuration
space and even for entire systems. The bad news is that, if
it does not work, we need to identify the options causing
the disruption of correlation. This can become costly as it
requires sampling, measuring, and learning multiple sets of
configurations.

Insight: In general, fitting a model mapping runtime perfor-
mance to energy consumption for each value of an option
always reduces the error across all subject systems.
Actionable: If the global error is too large (e.g., 70.4 %
for KANZI), producing option-level prediction models can
substantially reduce the error (e.g., 23.7 % for KANZI) and
make runtime performance a reasonable proxy.

In our set of subject systems, there is one subject system
that stands out with respect to prediction error: KANZI (see
Figure 3). Even the best regression model has an error of
23.7 % (cf. Table IV). The reason for this large error is a
high number of configurations with short runtime, such that
only one or two energy measurements could be made in that
time. So, the variance we learn with the regression models lies
within the measurement deviations of the measurement device.

C. Function-Level Correlation

Operationalization: Answering RQ3, we measure the run-
time and energy consumption of all functions that are visited
during program execution. To this end, we used the PERF
profiling tool3 for measuring the runtime within a function
(self-time). Specifically, we used PERF’s sampling-based pro-
filing mode (with 1007 Hz sampling frequency) to reduce
profiling overhead. To measure the energy consumption of the
individual functions, we used a power measurement system
with 2.5 kHz measurement frequency. For each function, we
sum up the runtime values and integrate the power values to
obtain the total runtime and energy consumption. The subject
systems are again executed with different configurations. Be-
cause of the expensive measurement process, and since PERF
is applicable only for C/C++ programs, we had to restrict the
number of subject systems, as well as the number of different
configurations to 200 per subject system. Due to the diversity
of results of RQ2.1, we selected BROTLI, X264, and LRZIP
to include one typical candidate with a strong correlation
(brotli), with mixed correlations at option level (lrzip), and
with clearly separable option-level correlations (x264). To
focus our analysis on relevant functions, we excluded functions
that account for less than 0.1 % of the system-level runtime.

For each configuration, we compute the ratio between en-
ergy consumption and runtime to obtain singular transfer factor
between both measures. The first column of Figure 4 shows
the transfer factors of all configurations for three functions
of LRZIP. If the transfer factors of all configurations are

3perf: Linux profiling with performance counters. [Online: 2023, Jan].
Available: https://perf.wiki.kernel.org/index.php/Main Page

Fig. 4: Proxy for LRZIP for the functions find best match,
BZ2 compressBlock, and primary hash.

TABLE V: Number of functions of the transfer factor analysis
including total number of functions (|F|).

Name |F| |FR| |FS | |FM | |FW |
BROTLI 233 58 58 – –
LRZIP 230 42 14 24 4
X264 391 93 – 43 50

|FR|: number of relevant functions; |FS |: number of single-factor functions; |FM |:
number of multi-factor functions; |FW |: number of functions without transfer factors.

centered tight around one value, we can speak of an accurate
performance proxy for the respective function. That is, the
runtime of a function can be multiplied by a single factor to
obtain the energy consumption. To test for a constant single
transfer factor, we applied the dip test (Hartigans test of uni-
modality [53]) and calculated the coefficient of variation [54].
If the distribution of all transfer factors over all configurations
is centered around one mode, and if the coefficient of variation
is below 5 %, we can take the average transfer factor together
with the runtime value as a proxy for energy consumption.
Finally, we count the number of functions per subject system
for which we identified a constant single transfer factor.

From RQ2.1, we know that configuration options influ-
ence the relation between energy consumption and runtime
performance at the system level. Therefore, we expect some
functions to reflect this behavior, meaning that the distribution
of transfer factors of some functions is expected to have
a multi-modal distribution. To test whether the modes of
the distribution can be assigned to individual configuration
options, we split the set of configurations by the values of
each option and repeat the test for a constant single transfer
factor per value. We find a proxy (i.e., multiple transfer factors)
if the values of the configuration option map the multi-modal
distribution with a coefficient of variation less than 5 % per
mode. We again count the number of functions per subject
system for which we can successfully find multiple transfer
factors that can be explained by a configuration option.

https://perf.wiki.kernel.org/index.php/Main_Page

Results: In Table V, we summarize our results of the
correlation at the function level, in which column |F| lists
the total number of functions per subject system. We focus
our analysis on those functions (|FR|) that contribute a share
of, at least, 0.1 % of a system’s runtime, which results in 58
(25 %), 42 (18 %), and 93 (23 %) functions for BROTLI, LRZIP,
and X264. The analyzed functions make up a total execution
time of 99.9 % per system.

Columns |FS | and |FM | list the number of functions for
which we runtime multiplied with a constant transfer factor
can act as a proxy for energy consumption. Column |FS |
counts functions for which a single transfer factor is sufficient.
An example is find best match from LRZIP, plotted in
Figure 4 first row: We can see that the transfer factors have
a uni-modal shape, centered around 1.7. For BROTLI, we ob-
tained a single transfer factor for all 58 performance-relevant
functions (|FR|). This confirms our system-level findings of
RQ1.1, since BROTLIs configurations exhibit nearly a perfect
correlation, as shown in the first row of Figure 2. While for
LRZIP, there are 14 functions that can use the same single
value as proxy, there is none for the 93 functions of X264.

Column |FM | lists the number of functions for which
we found multiple proxy values. We can get stable, precise
proxy values if we selected the configuration options such
that we properly split the multi-modal distributions. As an
example, the second row of Figure 4 highlights function
BZ2 compressBlock of LRZIP, for which we can observe
two modes in the distribution of transfer factors. These two
modes are controlled by option Cores. They apply when sin-
gle threading or multi threading is selected in a configuration.
In total, we found 24 functions for LRZIP and 43 functions for
X264 with multiple transfer factors.

Column |FW | shows the number of functions for which our
classification was unable to find transfer factor that depend
solely on a single configuration option. That is, interactions
among options change the performance–energy transfer factor
considerably. Overall, we were able to find proxy values for
139 out of 192 functions for all three subject systems.

Discussion: The fact that we are able to trace correlations
observed at the system level down to the function level, is
an intriguing result. We are even able to pin down individual
configuration options that affect the correlation per function
(RQ2.2). That is, configuration options change the transfer
factor between energy consumption and runtime performance
for individual functions. This result has implications for future
for energy hot-spot detection and code-level energy optimiza-
tion, since we first have to identify the options for individual
transfer factors and only then we can use performance as a
proxy for energy consumption.

Insight: We are able to trace the effects of configuration
options on the correlation between energy consumption
and runtime performance down to function level, rendering
not only system-level optimization via performance proxies
feasible, but also energy optimization at code level.

Actionable: Since an exhaustive profiling approach, which
includes energy measurements, is not feasible in practical
settings, profiling should be applied only to influential
options.

Note that, in our analysis, we concentrated solely on indi-
vidual configuration options and their different values. Clearly,
interactions between options may also affect the correlation, as
we already found for RQ2.2. This explains why we were not
able to determine a proxy for half of the relevant methods for
X264. However, even for functions that have been classified
as without transfer factor (cf. column |FW | in Table V),
we can compute constant single transfer factors for a subset
of the value ranges of an option. As an example, function
primary hash of LRZIP shows this aspect for option Level
in Figure 4. Here, we can compute a transfer factor for 7 out
of 9 values for this option. Only if option Level is set to 1 or
2, we see too large fluctuations, which might be caused by too
short runtimes of the function or not considering interactions.

D. Implications for Practitioners

Our results have shown that runtime performance can be
a viable proxy measure for energy consumption. However,
our results have also shown that there are situations when
the proxy measure becomes inaccurate or even misleading,
and that a stakeholder needs to know when it is safe to use
and when it needs more analysis to pin down an individual
transfer factor per option. We suggest three scenarios on
when and how to use performance as a proxy for energy
consumption: (i) energy optimization through configuration,
(ii) reconfiguration under performance constraints, and (iii)
energy-efficiency improvement at code level.

Optimization: Our results from RQ1.1 suggest that an initial
optimization of energy consumption can be made with runtime
performance data across. That is, it is reasonable to expect
that a random sampling approach with runtime performance
measurements on the entire configuration space provides a
good indicator also energy-efficient configurations. However,
this does not automatically mean that configurations with the
same runtime performance have the same energy consumption.
In fact, focusing on subsets of configurations clearly shows
that, when optimizing energy consumption with performance
constraints (i.e., sets of configurations with similar perfor-
mance), their energy consumption can vary substantially. In
this case, we need a learning approach based on energy
measurements to quantify the influence of individual options
and interactions on energy consumption (as found in RQ1.2).
Nevertheless, an-easy-to-follow heuristic is that the faster the
runtime performance the lower the energy consumption.

Reconfiguration: In a reconfiguration scenario (i.e., a run-
ning application requires switching configuration options), we
often are constrained by the current configuration, for example,
since the running system relies on user-selected features. In
this scenario, we choose a new configuration from a subset of
the configuration space that is similar to the current config-
uration. Our results show that, in such cases, the correlation

often breaks down. This has profound implications: We cannot
guarantee a similar (or even reduced) energy consumption even
when performance might improve. In RQ2.2, we identified the
configuration options and interactions that have a distinctive
(and possibly even contradicting) influence on the correlation.
RQ2.2 quantifies for the first time the effects of such con-
figuration options. Following this setup in a practical setting
would mean that, for a reconfiguration or a scenario with
existing performance constraints (e.g., with given service-level
agreements), we need actual energy measurements that enables
the stakeholder to rate the influence of individual options.

Code-level energy consumption: When debugging or im-
proving energy-intensive functions, developers need to trace
energy consumption to concrete functions at the code level.
RQ3 provides some recommendations for this scenario. As
shown in Table V, for most functions, a single proxy value
or a configuration-option-specific proxy can be found with
manageable effort, combining fine-grained energy measure-
ments with performance profiling data. The important take-
away message is that, for the majority of functions, a single en-
ergy measurement is enough because of the constant energy–
performance transfer factor of those functions. However, some
functions’ energy consumption need to be measured repeat-
edly, because we could not determine option-specific proxy
values for these. Overall, our energy–performance correlation
analysis has shown that runtime performance measurements
can serve as a solid proxy for energy consumption and may
be used in CI pipelines for automated regression detection.

E. Threats to Validity

Selecting Pearson’s correlation measure imposes a threat
to construct validity since other metrics such as rank-based
correlation measures might result in other correlation values.
Since measurement noise may influence both runtime perfor-
mance and energy consumption in different ways, even small
changes in runtime performance and energy consumption can
substantially influence the ranking. Thus, comparing the ranks
of runtime performance and energy consumption using rank-
based correlation measures is more error-prone, such that we
resort to the more robust correlation measure.

To increase external validity, we selected 14 configurable
software systems from different domains. These ranges from
throughput-intensive applications (e.g., compression tools,
MP3 encoder, code optimizer) to server applications (Web
server, databases). The configuration spaces contain 2 to 16
configuration options, some of which are numeric config-
uration options. Although this setup produces the largest
configuration-focused data set for runtime performance and
energy consumption we are aware of, there is no guarantee
that our results generalize to other systems or application
domains. However, since we already see a diverse picture in
our data, we argue that our results hold also for other real-
world applications.

There are also possible threats to validity regarding the
literature analysis and the selected sampling strategies, which
we discuss in Section III-B and Section IV-C.

VI. CONCLUSION

Understanding the relation between energy consumption
and runtime performance of configurable software systems
provides insights into whether runtime performance (which
is easy to measure) can act as a proxy measure for energy
consumption (which is more difficult to measure). An analysis
of the literature draws a mixed picture with even shared causes
for positive, negative, and no correlation between the two
measures. We found that configurability has not been studied
so far, possibly explaining some of the diverging observations.

We measured energy consumption and runtime performance
of 14 real-world software systems, investing 2.5 years of CPU
time, thereby building the largest set of combined energy-
performance measurements we are aware of. We found that
the correlation between energy consumption and runtime per-
formance indeed depends on individual configuration options
and interactions thereof: Despite an observed strong positive
correlation over the whole configuration space, when confined
to a subset of configurations, the correlation, and with it, the
suitability of a performance proxy for energy consumption,
can break down. Possible reasons are Simpson’s Paradox and
the presence of few, but influential options that dominate the
correlation. Applying our findings in practical settings would
mean that, in a greenfield scenario, runtime performance can
be used as a reasonable proxy for energy consumption. In
contrast, in a reconfiguration scenario, configurations with a
similar performance can exhibit a negative correlating energy
behavior, so we may need to determine the energy influence
of individual configuration options to reliably forecast energy
consumption of the changed configurations. By tracing the
effects of configuration options on the correlation between
energy consumption and runtime performance down to the
function level, we are able to identify the root cause for
configuration-dependent energy hot spots. This might be ex-
actly the cost-effective tool needed for energy-aware software.
However, identifying suitable methods and proxy values is not
trivial and may require some upfront investment. Our insights
indicate that these investments should come from an focused
option-level sampling process.

ACKNOWLEDGMENTS

Apel’s and Siegmund’s work has been funded by the
German Research Foundation (SI 2171/3-1, SI 2171/2-2, AP
206/11-1, AP 206/11-2, and Grant 389792660 as part of
TRR 248 – CPEC). Siegmund’s work has been supported by
the Federal Ministry of Education and Research of Germany
for the ”Center for Scalable Data Analytics and Artificial
Intelligence Dresden/Leipzig” (ScaDS.AI).

REFERENCES

[1] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy Consid-
erations for Modern Deep Learning Research,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 09. AAAI
Press, 2020, pp. 13 693–13 696.

[2] E. Kan, W. K. Chan, and T. Tse, “EClass: An Execution Classification
Approach to Improving the Energy-Efficiency of Software via Machine
Learning,” Journal of Systems and Software, vol. 85, no. 4, pp. 960–973,
2012.

[3] J. Mendonça, E. Andrade, and R. Lima, “Assessing Mobile Applica-
tions Performance and Energy Consumption Through Experiments and
Stochastic Models,” Computing, vol. 101, no. 12, pp. 1789–1811, 2019.

[4] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
You Have Given Me Too Many Knobs!: Understanding and Dealing
with Over-Designed Configuration in System Software,” in Proceedings
of the Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2015, pp. 307–319.

[5] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
Influence Models for Highly Configurable Systems,” in Proceedings of
the Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2015, pp. 284–294.

[6] J. Oh, D. Batory, M. Myers, and N. Siegmund, “Finding Near-Optimal
Configurations in Product Lines by Random Sampling,” in Proceedings
of the Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2017, pp. 61–71.

[7] P. Jamshidi and G. Casale, “An Uncertainty-Aware Approach to Optimal
Configuration of Stream Processing Systems,” in Proceedings of the
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2016,
pp. 39–48.

[8] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki,
and J. Padilla, “A Study of Feature Scattering in the Linux Kernel,”
IEEE Transactions on Software Engineering, 2018.

[9] H. Ha and H. Zhang, “DeepPerf: Performance Prediction for Config-
urable Software with Deep Sparse Neural Network,” in Proceedings
of the IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE / ACM, 2019, pp. 1095–1106.

[10] C. Kaltenecker, A. Grebhahn, N. Siegmund, and S. Apel, “The Interplay
of Sampling and Machine Learning for Software Performance Predic-
tion,” IEEE Software, vol. 37, no. 4, 2020.

[11] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and C. Kästner, “White-
Box Analysis over Machine Learning: Modeling Performance of Con-
figurable Systems,” in Proceedings of the IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE / ACM, 2021, pp.
1072–1084.

[12] M. Weber, S. Apel, and N. Siegmund, “White-Box Performance-
Influence Models: A Profiling and Learning Approach,” in Proceedings
of the IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE / ACM, 2021, pp. 232–233.

[13] M. Dong and L. Zhong, “Self-Constructive High-Rate System Energy
Modeling for Battery-Powered Mobile Systems,” in Proceedings of the
International Conference on Mobile Systems, Applications, and Services
(MobiSys). ACM, 2011, pp. 335–348.

[14] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler, “Energy metering
for free: Augmenting switching regulators for real-time monitoring,” in
Proceedings of the International Conference on Information Processing
in Sensor Networks (IPSN). IEEE, 2008, pp. 283–294.

[15] D. Bedard, M. Lim, R. Fowler, and A. Porterfield, “Powermon: Fine-
Grained and Integrated Power Monitoring for Commodity Computer
Systems,” in Proceedings of the IEEE SoutheastCon (SoutheastCon).
IEEE, 2010, pp. 479–484.

[16] A. Hindle, A. Wilson, K. Rasmussen, J. Barlow, J. Campbell, and
S. Romansky, “Greenminer: A Hardware Based Mining Software Repos-
itories Software Energy Consumption Framework,” in Proceedings of the
IEEE/ACM International Conference on Mining Software Repositories
(MSR). ACM, 2014, pp. 12–21.

[17] P. Pramanik, N. Sinhababu, B. Mukherjee, S. Padmanaban, A. Maity,
B. Upadhyaya, J. Holm-Nielsen, and P. Choudhury, “Power Consump-
tion Analysis, Measurement, Management, and Issues: A State-of-the-

Art Review of Smartphone Battery and Energy Usage,” IEEE Access,
vol. 7, pp. 182 113–182 172, 2019.

[18] M. Gamell, I. Rodero, M. Parashar, and S. Poole, “Exploring Energy
and Performance Behaviors of Data-Intensive Scientific Workflows on
Systems with Deep Memory Hierarchies,” in Proceedings of the Annual
International Conference on High Performance Computing (HiPC).
IEEE, 2013, pp. 226–235.

[19] Z. Zhou, J. Abawajy, F. Li, Z. Hu, M. Chowdhury, A. Alelaiwi, and
K. Li, “Fine-Grained Energy Consumption Model of Servers Based on
Task Characteristics in Cloud Data Center,” IEEE Access, vol. 6, pp.
27 080–27 090, 2018.

[20] B. Bruce, J. Petke, and M. Harman, “Reducing Energy Consumption
Using Genetic Improvement,” in Proceedings of the Annual Conference
on Genetic and Evolutionary Computation (GECCO). ACM, 2015, pp.
1327–1334.

[21] L. Cruz and R. Abreu, “Performance-Based Guidelines for Energy
Efficient Mobile Applications,” in Proceedings of the IEEE/ACM In-
ternational Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 2017, pp. 46–57.

[22] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying
Real User Activity Patterns to Guide Power Optimizations for Mobile
Architectures,” in Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE / ACM, 2009, pp.
168–178.

[23] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. Fernandes, and
J. Saraiva, “Energy Efficiency Across Programming Languages: How
do Energy, Time, and Memory Relate?” in Proceedings of the ACM
SIGPLAN International Conference on Software Language Engineering
(SLE). ACM, 2017, pp. 256–267.

[24] M. Puzović, S. Manne, S. GalOn, and M. Ono, “Quantifying Energy
Use in Dense Shared Memory HPC Node,” in Proceedings of the
International Workshop on Energy Efficient Supercomputing (E2SC).
IEEE, 2016, pp. 16–23.

[25] G. Pinto, F. Castor, and Y. Liu, “Understanding Energy Behaviors of
Thread Management Constructs,” in Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA), 2014, pp. 345–360.

[26] D.-K. Kang, G.-B. Choi, S.-H. Kim, I.-S. Hwang, and C.-H. Youn,
“Workload-Aware Resource Management for Energy Efficient Hetero-
geneous Docker Containers,” in Proceedings of the IEEE Region 10
Conference (TENCON). IEEE, 2016, pp. 2428–2431.

[27] M. Felderer and G. Travassos, Contemporary Empirical Methods in
Software Engineering. Springer, 2020.

[28] B. Kitchenham and P. Brereton, “A Systematic Review of Systematic
Review Process Research in Software Engineering,” Information and
software technology, vol. 55, no. 12, pp. 2049–2075, 2013.

[29] H. Yang, Q. Zhao, Z. Luan, and D. Qian, “iMeter: An Integrated
VM Power Model Based on Performance Profiling,” Future Generation
Computer Systems (FGCS), vol. 36, pp. 267–286, 2014.

[30] M. Rashid, L. Ardito, and M. Torchiano, “Energy Consumption Analysis
of Algorithms Implementations,” in Proceedings of the ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM). IEEE / ACM, 2015, pp. 1–4.

[31] Y. Lyu, D. Li, and W. Halfond, “Remove Rats from Your Code:
Automated Optimization of Resource Inefficient Database Writes for
Mobile Applications,” in Proceedings of the ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA). ACM,
2018, pp. 310–321.

[32] W. Baek and T. Chilimbi, “Green: A Framework for Supporting Energy-
Conscious Programming Using Controlled Approximation,” in Proceed-
ings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2010, pp. 198–209.

[33] B. Subramaniam and W.-C. Feng, “GBench: Benchmarking Methodol-
ogy for Evaluating the Energy Efficiency of Supercomputers,” Computer
Science-Research and Development, vol. 28, no. 2-3, pp. 221–230, 2013.

[34] G. Agosta, M. Bessi, E. Capra, and C. Francalanci, “Dynamic Memoiza-
tion for Energy Efficiency in Financial Applications,” in Proceedings of
the International Green Computing Conference and Workshops (IGCC).
IEEE, 2011, pp. 1–8.

[35] T. Rauber, G. Rünger, and M. Stachowski, “Performance and Energy
Metrics for Multi-Threaded Applications on DVFS Processors,” Sus-
tainable Computing: Informatics and Systems, vol. 17, pp. 55–68, 2018.

[36] M. Kambadur and M. Kim, “An Experimental Survey of Energy Man-
agement Across the Stack,” in Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA). ACM, 2014, pp. 329–344.

[37] H. Anwar, B. Demirer, D. Pfahl, and S. Srirama, “Should Energy Con-
sumption Influence the Choice of Android Third-Party HTTP Libraries?”
in Proceedings of the IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MOBILESoft). IEEE / ACM, 2020,
pp. 87–97.

[38] W. Oliveira, R. Oliveira, and F. Castor, “A Study on the Energy
Consumption of Android App Development Approaches,” in Proceed-
ings of the IEEE/ACM International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 42–52.

[39] R. Pereira, M. Couto, J. Cunha, J. Fernandes, and J. Saraiva, “The
Influence of the Java Collection Framework on Overall Energy Con-
sumption,” in Proceedings of the IEEE/ACM International Workshop on
Green and Sustainable Software (GREENS). IEEE / ACM, 2016, pp.
15–21.

[40] J. Michanan, R. Dewri, and M. Rutherford, “GreenC5: An Adaptive,
Energy-Aware Collection for Green Software Development,” Sustainable
Computing: Informatics and Systems, vol. 13, pp. 42–60, 2017.

[41] E. Calore, A. Gabbana, S. Schifano, and R. Tripiccione, “Software and
DVFS Tuning for Performance and Energy-Efficiency on Intel KNL
Processors,” Journal of Low Power Electronics and Applications, vol. 8,
no. 2, 2018.

[42] I. Malavolta, K. Chinnappan, L. Jasmontas, S. Gupta, and K. Soltany,
“Evaluating the Impact of Caching on the Energy Consumption and Per-
formance of Progressive Web Apps,” in Proceedings of the IEEE/ACM
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). ACM, 2020, pp. 109–119.

[43] M. Nakhkash, T. Gia, I. Azimi, A. Anzanpour, A. Rahmani, and P. Lil-
jeberg, “Analysis of Performance and Energy Consumption of Wearable
Devices and Mobile Gateways in IOT Applications,” in Proceedings
of the International Conference on Omni-Layer Intelligent Systems
(COINS). ACM, 2019, pp. 68–73.

[44] Q. Cai, J. González, G. Magklis, P. Chaparro, and A. González,
“Thread Shuffling: Combining DVFS and Thread Migration to Reduce
Energy Consumptions for Multi-Core Systems,” in Proceedings of the
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE / ACM, 2011, pp. 379–384.

[45] H. Malik, P. Zhao, and M. Godfrey, “Going green: An exploratory
analysis of energy-related questions,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. IEEE, 2015, pp. 418–421.

[46] S. Georgiou, S. Rizou, and D. Spinellis, “Software development lifecycle
for energy efficiency: Techniques and tools,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1–33, 2019.

[47] D. Bedard, R. Fowler, M. Lim, and A. Porterfield, “PowerMon 2:
Fine-grained, Integrated Power Measurement,” RENCI Technical Report
Series, pp. 1–15, 2009.

[48] M. Velez, P. Jamshidi, F. Sattler, N. Siegmund, S. Apel, and C. Kästner,
“Configcrusher: Towards White-Box Performance Analysis for Config-
urable Systems,” Automated Software Engineering, vol. 27, no. 3, pp.
265–300, 2020.

[49] Y. Shu, Y. Sui, H. Zhang, and G. Xu, “Perf-AL: Performance Prediction
for Configurable Software through Adversarial Learning,” in Proceed-
ings of the 14th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2020, pp. 1–11.

[50] C. Blyth, “On Simpson’s Paradox and the Sure-Thing Principle,” Journal
of the American Statistical Association, vol. 67, no. 338, pp. 364–366,
1972.

[51] S. Kolesnikov, N. Siegmund, C. Kästner, A. Grebhahn, and S. Apel,
“Tradeoffs in Modeling Performance of Highly Configurable Software
Systems,” Software & Systems Modeling (SoSym), pp. 2265–2283, 2019.

[52] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski,
“Variability-Aware Performance Prediction: A Statistical Learning Ap-
proach,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE / ACM, 2013, pp. 301–
311.

[53] J. Hartigan and P. Hartigan, “The Dip Test of Unimodality,” The Annals
of Statistics, pp. 70–84, 1985.

[54] S. Kokoska and D. Zwillinger, CRC Standard Probability and Statistics
Tables and Formulae. CRC Press, 2000.

	Introduction
	Correlation of Energy Consumption and Performance
	Analysis of the State of the Art
	Methodology
	Results
	Related Studies

	Experiment Setup
	Research Questions
	Measurement Setup
	Subject Systems
	Basic definitions

	Performance–Energy Study
	System-Level Correlation
	Influence of Options and Interactions on the Correlation
	Function-Level Correlation
	Implications for Practitioners
	Threats to Validity

	Conclusion
	References

